Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.07.548077

ABSTRACT

Most COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, the S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production of the recombinant S trimer and, more importantly, its immunogenicity, suggesting that these two parameters are related. However, S-2P still shows some molecular instability and it is produced with low yield. Thus, S-2P production can be further optimized. Here we described a novel set of mutations identified by molecular modelling and located in the S2 region of the Spike that increase S-2P production up to five-fold. Besides their immunogenicity, the efficacy of two representative S-2P-based mutants, S-29 and S-21, protecting from a heterologous SARS-CoV-2 Beta variant challenge was assayed in K18-hACE2 mice (an animal model of severe SARS-CoV-2 disease) and golden Syrian hamsters (GSH) (a moderate disease model). S-21 induced higher level of WH1 and Delta variants neutralizing antibodies than S-2P in K18-hACE2 mice three days after challenge. Viral load in nasal turbinate and oropharyngeal samples were reduced in S-21 and S-29 vaccinated mice. Despite that, only the S-29 protein protected 100% of K18-hACE2 mice from severe disease. When GSH were analyzed, all immunized animals were protected from disease development irrespectively of the immunogen they received. Therefore, the higher yield of S-29, as well as its improved immunogenicity and efficacy protecting from the highly pathogenic SARS-CoV-2 Beta variant, pinpoint the S-29 spike mutant as an alternative to the S-2P protein for future SARS-CoV-2 vaccine development.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2846684.v1

ABSTRACT

Safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels. Here, we described a novel V987H mutation that increases by two-fold the production of the recombinant Spike and the exposure of the receptor binding domain (RBD). S-V987H immunogenicity was similar to S-2P in K18-hACE2 mice and golden Syrian hamsters, and superior to a monomeric RBD. Immunization with S-V987H, but not with S-2P or RBD, conferred full protection against severe disease in both animal models after SARS-CoV-2 challenge (D614G and B.1.351 variants). Furthermore, S-V987H immunized K18-hACE2 mice showed a faster tissue viral clearance than RBD- or S-2P-vaccinated animals. Thus, S-V987H protein provides an alternative to S-2P for future SARS-CoV-2 vaccines development.


Subject(s)
Coronavirus Infections , COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.20.524748

ABSTRACT

In the present study we report the functional and structural characterization of 17T2, a new highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody (mAb) isolated from a convalescent COVID-19 individual infected during the first wave of the COVID-19 pandemic. 17T2 is a class 1 VH1-58/{kappa}3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA memory B cell and developed as a human recombinant IgG1. Functional characterization revealed that 17T2 mAb has a high and exceptionally broad neutralizing activity against all SARS-CoV-2 spike variants tested, including BQ.1.1. Moreover, 17T2 mAb has in vivo prophylactic activity against Omicron BA.1.1 infection in K18-hACE2 transgenic mice. 3D reconstruction from cryogenic-electron microscopy (cryo-EM) showed that 17T2 binds the Omicron BA.1 spike protein with the RBD domains in up position and recognizes an epitope overlapping with the receptor binding motif, as it is the case for other structurally similar neutralizing mAbs, including S2E12. Yet, unlike S2E12, 17T2 retains its high neutralizing activity against all Omicron sublineages tested, probably due to a larger contact area with the RBD, which could confer a higher resilience to spike mutations. These results highlight the impact of small structural antibody changes on neutralizing performance and identify 17T2 mAb as a potential candidate for future therapeutic and prophylactic interventions.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.03.454861

ABSTRACT

SARS-CoV-2 variants display enhanced transmissibility and/or immune evasion and can be generated in humans or animals, like minks, thus generating new reservoirs. The continuous surveillance of animal susceptibility to new variants is necessary to predict pandemic evolution. In this study we demonstrate that, compared to the B.1 SARS-CoV-2 variant, K18-hACE2 transgenic mice challenged with the B.1.351 variant displayed a faster progression of infection. Furthermore, we also report that B.1.351 can establish infection in wildtype mice, while B.1 cannot. B.1.351-challenged wildtype mice showed a milder infection than transgenic mice, confirmed by detectable viral loads in oropharyngeal swabs and tissues, lung pathology, immunohistochemistry and serology. In silico models supported these findings by demonstrating that the Spike mutations in B.1.351 resulted in increased affinity for both human and murine ACE2 receptors. Overall, this study highlights the plasticity of SARS-CoV-2 animal susceptibility landscape, which may contribute to viral persistence and expansion.

SELECTION OF CITATIONS
SEARCH DETAIL